Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654597

RESUMO

As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.

2.
Sci Technol Adv Mater ; 25(1): 2315013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476511

RESUMO

The ever-growing use of nature-derived materials creates exciting opportunities for novel development in various therapeutic biomedical applications. Living cells, serving as the foundation of nanoarchitectonics, exhibit remarkable capabilities that enable the development of bioinspired and biomimetic systems, which will be explored in this review. To understand the foundation of this development, we first revisited the anatomy of cells to explore the characteristics of the building blocks of life that is relevant. Interestingly, animal cells have amazing capabilities due to the inherent functionalities in each specialized cell type. Notably, the versatility of cell membranes allows red blood cells and neutrophils' membranes to cloak inorganic nanoparticles that would naturally be eliminated by the immune system. This underscores how cell membranes facilitate interactions with the surroundings through recognition, targeting, signalling, exchange, and cargo attachment. The functionality of cell membrane-coated nanoparticles can be tailored and improved by strategically engineering the membrane, selecting from a variety of cell membranes with known distinct inherent properties. On the other hand, plant cells exhibit remarkable capabilities for synthesizing various nanoparticles. They play a role in the synthesis of metal, carbon-based, and polymer nanoparticles, used for applications such as antimicrobials or antioxidants. One of the versatile components in plant cells is found in the photosynthetic system, particularly the thylakoid, and the pigment chlorophyll. While there are challenges in consistently synthesizing these remarkable nanoparticles derived from nature, this exploration begins to unveil the endless possibilities in nanoarchitectonics research.


We have highlighted the Cell-derived Nanomaterials for Biomedical Applications through the lenses of our team who have experiences with working on cell membrane, thylakoids, and studying the impact of nanoparticles on biological phenomenon such as nanomaterialsinduced endothelial leakiness (NanoEL). In this review, we have discussed the progress and the wide potential of nanoarchitectonics in plant systems, animal cells and microorganisms. Due to our unique backgrounds, our take on this topic may be the novelty of the review.

3.
Sci Technol Adv Mater ; 25(1): 2322458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440402

RESUMO

A series of porous organic polymers based on a singlet oxygen generating oxoporphyinogen ('OxP') has been successfully prepared from a pseudotetrahedral OxP-tetraamine precursor (OxP(4-NH2Bn)4) by its reaction with tetracarboxylic acid dianhydrides under suitable conditions. Of the compounds studied, those containing naphthalene (OxP-N) and perylene (OxP-P) spacers, respectively, have large surface areas (~530 m2 g-1). On the other hand, the derivative with a simple benzene spacer (OxP-B) exhibits the best 1O2 generating capability. Although the starting OxP-tetraamine precursor is a poor 1O2 generator, its incorporation into OxP POPs leads to a significant enhancement of 1O2 productivity, which is largely due to the transformation of NH2 groups to electron-withdrawing diimides. Overall 1O2 production efficacy of OxP-POPs under irradiation by visible light is significantly improved over the common reference material PCN-222. All the materials OxP-B, OxP-N and OxP-P promote oxidation of thioanisole involving conversion of ambient triplet state oxygen to singlet oxygen under visible light irradiation and its reaction with the sulfide. Although the reaction rate of the oxidation promoted by OxP POPs is generally lower than for conventional materials (such as PCN-222) or previously studied OxP derivatives, undesired overoxidation of the substrate to methyl phenyl sulfone is suppressed. For organic sulfides, selectivity of oxidation is especially important for detoxification of mustard gas (bis(2-chloroethyl)sulfide) or similarly toxic compounds since controlled oxidation leads to the low toxicity bis(2-chloroethyl)sulfoxide while overoxidation leads to intoxification (since bis(2-chloroethyl)sulfone presents greater toxicity to humans than the sulfide substrate). Therefore, OxP POPs capable of promoting selective oxidation of sulfides to sulfoxides have excellent potential to be used as mild and selective detoxification agents.


Oxoporphyrinogen (OxP) is a unique chromophore compound in that it is intrinsically de-aggregated allowing large quantum yields of singlet oxygen generation. Due to its structure, OxP is also an ideal building block for porous systems. In this work, we describe the first incorporation of OxP in highly stable microporous polymers strongly enhanced singlet oxygen generation for selective oxidation of organic sulfides to sulfoxides (as a model reaction) under heterogeneous conditions. The novelty of this work lies in the high stability and easy recovery of the materials, the synergetic enhancement of singlet oxygen generation in the polymers over the starting OxP, and the excellent selectivity for the oxidation reaction.

4.
Sci Technol Adv Mater ; 25(1): 2315014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419801

RESUMO

The interaction between diverse nanoarchitectured fullerenes and cells is crucial for biomedical applications. Here, we detailed the preparation of hydrophilic self-assembled fullerenes by the liquid-liquid interfacial precipitation (LLIP) method and hydrophilic coating of the materials as a possible vascularization strategy. The interactions of vascular endothelial cells (ECs) with hydrophilic fullerene nanotubes (FNT-P) and hydrophilic fullerene nanowhiskers (FNW-P) were investigated. The average length and diameter of FNT-P were 16 ± 2 µm and 3.4 ± 0.4 µm (i.e. aspect ratios of 4.6), respectively. The average length and diameter of FNW-P were 65 ± 8 µm and 1.2 ± 0.2 µm (i.e. aspect ratios of 53.9), respectively. For two-dimensional (2D) culture after 7 days, the ECs remained viable and proliferated up to ~ 420% and ~ 400% with FNT-P and FNW-P of 50 µg/mL, respectively. Furthermore, an optimized chitosan-based self-healing hydrogel with a modulus of ~400 Pa was developed and used to incorporate self-assembled fullerenes as in vitro three-dimensional (3D) platforms to investigate the impact of FNT-P and FNW-P on ECs within a 3D environment. The addition of FNW-P or FNT-P (50 µg/mL) in the hydrogel system led to proliferation rates of ECs up to ~323% and ~280%, respectively, after 7 days of culture. The ECs in FNW-P hydrogel displayed an elongated shape with aligned morphology, while those in FNT-P hydrogel exhibited a rounded and clustered distribution. Vascular-related gene expressions of ECs were significantly upregulated through interactions with these fullerenes. Thus, the combined use of different nanoarchitectured self-assembled fullerenes and self-healing hydrogels may offer environmental cues influencing EC development in a 3D biomimetic microenvironment, holding promise for advancing vascularization strategy in tissue engineering.


Self-assembled fullerenes with large aspect ratios modulate the morphology and gene expression of endothelial cells within a soft biomimetic 3D microenvironment, representing a promising new vascularization strategy in tissue engineering.

5.
Micromachines (Basel) ; 15(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399010

RESUMO

Nanotechnology has advanced the techniques for elucidating phenomena at the atomic, molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to create functional materials from unit structures. Consider the material function when nanoarchitectonics enables the design of materials whose internal structure is controlled at the nanometer level. Material function is determined by two elements. These are the functional unit that forms the core of the function and the environment (matrix) that surrounds it. This review paper discusses the nanoarchitectonics of confined space, which is a field for controlling functional materials and molecular machines. The first few sections introduce some of the various dynamic functions in confined spaces, considering molecular space, materials space, and biospace. In the latter two sections, examples of research on the behavior of molecular machines, such as molecular motors, in confined spaces are discussed. In particular, surface space and internal nanospace are taken up as typical examples of confined space. What these examples show is that not only the central functional unit, but also the surrounding spatial configuration is necessary for higher functional expression. Nanoarchitectonics will play important roles in the architecture of such a total system.

6.
Materials (Basel) ; 17(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399187

RESUMO

It has become clear that superior material functions are derived from precisely controlled nanostructures. This has been greatly accelerated by the development of nanotechnology. The next step is to assemble materials with knowledge of their nano-level structures. This task is assigned to the post-nanotechnology concept of nanoarchitectonics. However, nanoarchitectonics, which creates intricate three-dimensional functional structures, is not always easy. Two-dimensional nanoarchitectonics based on reactions and arrangements at the surface may be an easier target to tackle. A better methodology would be to define a two-dimensional structure and then develop it into a three-dimensional structure and function. According to these backgrounds, this review paper is organized as follows. The introduction is followed by a summary of the three issues; (i) 2D to 3D dynamic structure control: liquid crystal commanded by the surface, (ii) 2D to 3D rational construction: a metal-organic framework (MOF) and a covalent organic framework (COF); (iii) 2D to 3D functional amplification: cells regulated by the surface. In addition, this review summarizes the important aspects of the ultimate three-dimensional nanoarchitectonics as a perspective. The goal of this paper is to establish an integrated concept of functional material creation by reconsidering various reported cases from the viewpoint of nanoarchitectonics, where nanoarchitectonics can be regarded as a method for everything in materials science.

7.
Materials (Basel) ; 17(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38204123

RESUMO

The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.

8.
Adv Mater ; : e2310105, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234135

RESUMO

In sharp contrast to conventional solid/hydrogel platforms, water-immiscible liquids, such as perfluorocarbons and silicones, allow the adhesion of mammalian cells via protein nanolayers (PNLs) formed at the interface. However, fluorocarbons and silicones, which are typically used for liquid cell culture, possess only narrow ranges of physicochemical parameters and have not allowed for a wide variety of cell culturing environments. In this paper, it is proposed that water-immiscible ionic liquids (ILs) are a new family of liquid substrates with tunable physicochemical properties and high solvation capabilities. Tetraalkylphosphonium-based ILs are identified as non-cytotoxic ILs, whereon human mesenchymal stem cells are successfully cultured. By reducing the cation charge distribution, or ionicity, via alkyl chain elongation, the interface allows cell spreading with matured focal contacts. High-speed atomic force microscopy observations of the PNL formation process suggest that the cation charge distribution significantly altered the protein adsorption dynamics, which are associated with the degree of protein denaturation and the PNL mechanics. Moreover, by exploiting dissolution capability of ILs, an ion-gel cell scaffold is fabricated. This enables to further identify the significant contribution of bulk subphase mechanics to cellular mechanosensing in liquid-based culture scaffolds.

9.
Chem Commun (Camb) ; 60(16): 2152-2167, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38291864

RESUMO

Nanoarchitectonics, as a post-nanotechnology concept, constructs functional materials and structures using nanounits of atoms, molecules, and nanomaterials as materials. With the concept of nanoarchitectonics, asymmetric structures, and hierarchical organization, rather than mere assembly and organization of structures, can be produced, where rational physical and chemical communications will lead to the development of more advanced functional materials. Layer-by-layer assembly can be a powerful tool for this purpose, as exemplified in this feature paper. This feature article explores the possibility of constructing advanced functional systems based on recent examples of layer-by-layer assembly. We will illustrate both the development of more basic methods and more advanced nanoarchitectonics systems aiming towards practical applications. Specifically, the following sections will provide examples of (i) advancement in basics and methods, (ii) physico-chemical aspects and applications, (iii) bio-chemical aspects and applications, and (iv) bio-medical applications. It can be concluded that materials nanoarchitectonics based on layer-by-layer assembly is a useful method for assembling asymmetric structures and hierarchical organization, and is a powerful technique for developing functions through physical and chemical communication.

10.
Langmuir ; 39(50): 18175-18186, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38047629

RESUMO

Transition-metal dichalcogenides (TMDs) have attracted increasing attention in fundamental studies and technological applications owing to their atomically thin thickness, expanded interlayer distance, motif band gap, and phase-transition ability. Even though TMDs have a wide variety of material assets from semiconductor to semimetallic to metallic, the materials with fixed features may not show excellence for precise application. As a result of exclusive crystalline polymorphs, physical and chemical assets of TMDs can be efficiently modified via various approaches of interface nanoarchitectonics, including heteroatom doping, heterostructure, phase engineering, reducing size, alloying, and hybridization. With modified properties, TMDs become interesting materials in diverse fields, including catalysis, energy, electronics, transistors, and optoelectronics.

11.
Chem Biodivers ; 20(12): e202301209, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37962402

RESUMO

Genus Corydalis is a rich source of isoquinoline alkaloids reported to having potential bioactivities. Corydalis chaerophylla collected from Nepal at an altitude of 2400-4800 m was extracted using hexane, methanol and chloroform as solvents. The resulting hexane, methanol and chloroform extracts were subjected to LC-DAD-MSn analysis to yield fifteen different alkaloids. To assess any potential pharmacological properties, antimicrobial activity against two Gram-positive, two Gram-negative bacterial strains and one fungal strain was assessed, revealing significant inhibitive action of the methanol and chloroform extracts. Of the extracts obtained using chloroform contained the highest content of phenolic compounds at 113 mg GAE/g, while the highest total flavonoid content was found for the hexane extract with a value of 46.45 mg QE/g. The chloroform extract also exhibited a considerable antioxidant activity at IC50 value, 261.5±3 µg/mL, for the DPPH assay. Conversely, the methanol extract exhibited the highest LC50 value for Brine Shrimp cytotoxicity at 196±3 µg/mL being least potential for the test. The methanol extract was found to be the most active against α-amylase inhibition with an IC50 of 51.52±2 µg/mL. In an in vivo acute oral toxicity study against mice, methanol and chloroform extracts presented harmful effects with 1000.36 mg/kg BW and 515 mg/kg BW for LD50 , respectively. By analyzing all the results of the solvents used, the chloroform extract was found to be the most active, a feature that will be used in future isolation procedures and other pharmacological tests.


Assuntos
Alcaloides , Corydalis , Animais , Camundongos , Extratos Vegetais/química , Hexanos , Metanol , Clorofórmio , Antioxidantes/química , Bactérias Gram-Negativas , Solventes
12.
RSC Adv ; 13(48): 34012-34019, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38020010

RESUMO

Nicotine adenine dinucleotide derivatives NADH and NADPH are intimately involved in energy and electron transport within cells. The fluorescent ubiquinone-rhodol (Q-Rh) probe is used for NADPH activation monitoring. Q-Rh reacts with NADPH yielding its quenched hydroquinone-rhodol (H2Q-Rh) form with concurrent NADPH activation (i.e. NADP+ formation). NADPH activation can be enhanced by the addition of an IrIII-complex (i.e. [(η5-C5Me5)Ir(phen)(H2O)]2+) as a promoter. The rate of the Q-Rh fluorescence quenching process is proportional to the NADPH activation rate, which can be used to monitor NADPH. Experiments were performed in phosphate-buffered saline (PBS) solution and on HeLa cell cultures to analyze the kinetics of Q-Rh reduction and the influence of the IrIII-complex promoter on the activation of NADPH (in PBS) and of other intracellular reducing agents (in HeLa cells). There is a substantial increase in Q-Rh reduction rate inside HeLa cells especially after the addition of IrIII-complex promoter. This increase is partly due to a leakage process (caused by IrIII-complex-induced downstream processes which result in cell membrane disintegration) but also involves the nonspecific activation of other intracellular reducing agents, including NADH, FADH2, FMNH2 or GSH. In the presence only of Q-Rh, the activation rate of intracellular reducing agents is 2 to 8 times faster in HeLa cells than in PBS solution. When both Q-Rh and IrIII-complex are present, the rate of the IrIII-complex catalyzed reduction reaction is 7 to 23 times more rapid in HeLa cells. Concentration- and time-dependent fluorescence attenuation of Q-Rh with third-order reaction kinetics (reasonably approximated as pseudo-first-order in Q-Rh) has been observed and modelled. This reaction and its kinetics present an example of "bioparallel chemistry", where the activation of a molecule can trigger a unique chemical process. This approach stands in contrast to the conventional concept of "bioorthogonal chemistry", which refers to chemical reactions that occur without disrupting native biological processes.

13.
Materials (Basel) ; 16(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37834504

RESUMO

The history of mankind has been accompanied by the development of materials science [...].

14.
Nature ; 622(7982): 285-291, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821588

RESUMO

The chemical doping of molecular semiconductors is based on electron-transfer reactions between the semiconductor and dopant molecules; here, the redox potential of the dopant is key to control the Fermi level of the semiconductor1,2. The tunability and reproducibility of chemical doping are limited by the availability of dopant materials and the effects of impurities such as water. Here we focused on proton-coupled electron-transfer (PCET) reactions, which are widely used in biochemical processes3,4; their redox potentials depend on an easily handled parameter, that is, proton activity. We immersed p-type organic semiconductor thin films in aqueous solutions with PCET-based redox pairs and hydrophobic molecular ions. Synergistic reactions of PCET and ion intercalation resulted in efficient chemical doping of crystalline organic semiconductor thin films under ambient conditions. In accordance with the Nernst equation, the Fermi levels of the semiconductors were controlled reproducibly with a high degree of precision-a thermal energy of about 25 millielectronvolts at room temperature and over a few hundred millielectronvolts around the band edge. A reference-electrode-free, resistive pH sensor based on this method is also proposed. A connection between semiconductor doping and proton activity, a widely used parameter in chemical and biochemical processes, may help create a platform for ambient semiconductor processes and biomolecular electronics.

15.
Chem Commun (Camb) ; 59(73): 10835-10865, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37608724

RESUMO

Colloidal semiconductor nanocrystals (NCs) have been extensively investigated owing to their unique properties induced by the quantum confinement effect. The advent of colloidal synthesis routes led to the design of stable colloidal NCs with uniform size, shape, and composition. Metal oxides, phosphides, and chalcogenides (ZnE, CdE, PbE, where E = S, Se, or Te) are few of the most important monocomponent semiconductor NCs, which show excellent optoelectronic properties. The ability to build quantum confined heterostructures comprising two or more semiconductor NCs offer greater customization and tunability of properties compared to their monocomponent counterparts. More recently, the halide perovskite NCs showed exceptional optoelectronic properties for energy generation and harvesting applications. Numerous applications including photovoltaic, photodetectors, light emitting devices, catalysis, photochemical devices, and solar driven fuel cells have demonstrated using these NCs in the recent past. Overall, semiconductor NCs prepared via the colloidal synthesis route offer immense potential to become an alternative to the presently available device applications. This feature article will explore the progress of NCs syntheses with outstanding potential to control the shape and spatial dimensionality required for photovoltaic, light emitting diode, and photocatalytic applications. We also attempt to address the challenges associated with achieving high efficiency devices with the NCs and possible solutions including interface engineering, packing control, encapsulation chemistry, and device architecture engineering.

16.
Small ; : e2305636, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641176

RESUMO

Science in the small world has become a crucial key that has the potential to revolutionize materials technology. This trend is embodied in the postnanotechnology concept of nanoarchitectonics. The goal of nanoarchitectonics is to create bio-like functional structures, in which self-organized and hierarchical structures are working efficiently. Liquid-liquid interface like environments such as cell membrane surface are indispensable for the expression of biological functions through the accumulation and organization of functional materials. From this viewpoint, it is necessary to reconsider the liquid-liquid interface as a medium where nanoarchitectonics can play an active role. In this review, liquid-liquid interfacial nanoarchitectonics is classified by component materials such as organic, inorganic, carbon, and bio, and recent research examples are discussed. Examples discussed in this paper include molecular aggregates, supramolecular polymers, conductive polymers film, crystal-like capsules, block copolymer assemblies, covalent organic framework (COF) films, complex crystals, inorganic nanosheets, colloidosomes, fullerene assemblies, all-carbon π-conjugated graphite nanosheets, carbon nanoskins and fullerphene thin films at liquid-liquid interfaces. Furthermore, at the liquid-liquid interface using perfluorocarbons and aqueous phases, cell differentiation controls are discussed with the self-assembled structure of biomaterials. The significance of liquid-liquid interfacial nanoarchitectonics in the future development of materials will then be discussed.

17.
Nanotechnology ; 34(47)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37567153

RESUMO

The layer-by-layer (LbL) technique has been proven to be one of the most versatile approaches in order to fabricate functional nanofilms. The use of simple and inexpensive procedures as well as the possibility to incorporate a very wide range of materials through different interactions have driven its application in a wide range of fields. On the other hand, field-effect transistors (FETs) are certainly among the most important elements in electronics. The ability to modulate the flowing current between a source and a drain electrode via the voltage applied to the gate electrode endow these devices to switch or amplify electronic signals, being vital in all of our everyday electronic devices. In this topical review, we highlight different research efforts to engineer field-effect transistors using the LbL assembly approach. We firstly discuss on the engineering of the channel material of transistors via the LbL technique. Next, the deposition of dielectric materials through this approach is reviewed, allowing the development of high-performance electronic components. Finally, the application of the LbL approach to fabricate FETs-based biosensing devices is also discussed, as well as the improvement of the transistor's interfacial sensitivity by the engineering of the semiconductor with polyelectrolyte multilayers.

18.
Nat Commun ; 14(1): 4269, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460554

RESUMO

Delivering cancer therapeutics to tumors necessitates their escape from the surrounding blood vessels. Tumor vasculatures are not always sufficiently leaky. Herein, we engineer therapeutically competent leakage of therapeutics from tumor vasculature with gold nanoparticles capable of inducing endothelial leakiness (NanoEL). These NanoEL gold nanoparticles activated the loss of endothelial adherens junctions without any perceivable toxicity to the endothelial cells. Microscopically, through real time live animal intravital imaging, we show that NanoEL particles induced leakiness in the tumor vessels walls and improved infiltration into the interstitial space within the tumor. In both primary tumor and secondary micrometastases animal models, we show that pretreatment of tumor vasculature with NanoEL particles before therapeutics administration could completely regress the cancer. Engineering tumoral vasculature leakiness represents a new paradigm in our approach towards increasing tumoral accessibility of anti-cancer therapeutics instead of further increasing their anti-cancer lethality.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias de Tecido Vascular , Neoplasias , Animais , Células Endoteliais/patologia , Ouro , Nanopartículas Metálicas/uso terapêutico , Endotélio/patologia , Neoplasias/patologia
19.
Angew Chem Int Ed Engl ; 62(46): e202307615, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37485623

RESUMO

Reactions occurring at surfaces and interfaces necessitate the creation of well-designed surface and interfacial structures. To achieve a combination of bulk material (i.e., framework) and void spaces, a meticulous process of "nano-architecting" of the available space is necessary. Conventional porous materials such as mesoporous silica, zeolites, and metal-organic frameworks lack advanced cooperative functionalities owing to their largely monotonous pore geometries and limited conductivities. To overcome these limitations and develop functional structures with surface-specific functions, the novel materials space-tectonics methodology has been proposed for future materials synthesis. This review summarizes recent examples of materials synthesis based on designing building blocks (i.e., tectons) and their hybridization, along with practical guidelines for implementing materials syntheses and state-of-the-art examples of practical applications. Lastly, the potential integration of materials space-tectonics with emerging technologies, such as materials informatics, is discussed.

20.
RSC Adv ; 13(31): 21502-21509, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37469969

RESUMO

With the emergence of the energy crisis and the development of flexible electronics, there is an urgent need to develop new reliable energy supply devices with good flexibility, stable energy storage, and efficient energy transfer. Porous carbon materials have been proven to enhance the efficiency of ion transport, as the nanospaces within them serve as pathways for mass transport. However, they have been mainly investigated in the electrodes of supercapacitors and batteries. To elucidate their function in the solid electrolytes, we introduced C60-based carbonized nanospheres into PVA/TEMPO-cellulose-based hydrogels by exploiting the electrostatic interaction between the carboxyl groups of TEMPO-cellulose and the carbonized nanospheres. The obtained hydrogels were further utilized as the solid electrolytes for the supercapacitors. Through a comprehensive investigation, we found that the carbonized nanospheres can act as physical crosslinking points and increase the maximum stress of the hydrogel from 0.12 to 0.31 MPa without affecting the maximum strain. In addition, the nanospaces of the carbonized nanospheres provided a pathway for ion transport, improving the capacitance of the supercapacitor from 344.83 to 369.18 mF cm-2 at 0.5 mA cm-2. The capacitance retention was also improved from 53% to 62% at 10 mA cm-2. Collectively, this study provides new insights into the application of carbonized materials to solid electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...